

1.50mm Height PLCC-6 Package Top View Type Super Yellow Chip LED Technical Data Sheet

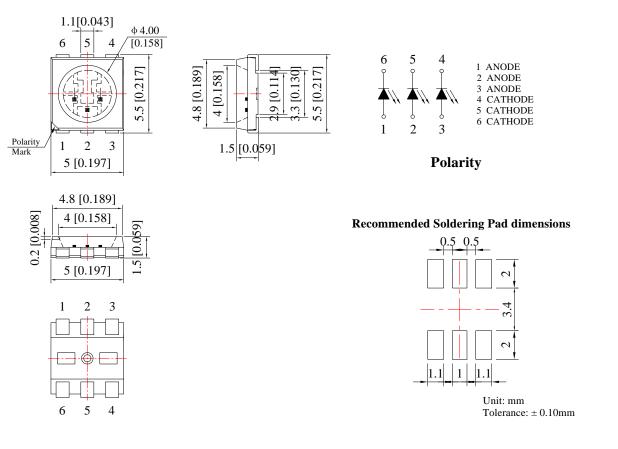
Part No.: R5050UYC-Y2-4D

Features:

- \diamond PLCC-6 package.
- \diamond White package.
- \diamond Optical indicator.
- \diamond Colorless clear window.
- ♦ Ideal for backlight and light pipe application.
- \diamond Inter reflector.
- \diamond Built in 3 LED chips.
- \diamond Wide viewing angle.
- ♦ Suitable for vapor-phase reflow, infrared reflow and wave solder processes.
- ♦ Suitable for all SMT assembly and solder process.
- ♦ Computable with automatic placement equipment.
- \diamond Available on tape and reel (12mm Tape).
- ♦ The product itself will remain within RoHS compliant Version.

Descriptions:

♦ The R5050 is available in soft red, orange, yellow, green, blue and white. Due to the Package design, the LED has wide viewing angle and optimized light coupling by inter reflector, this feature makes the SMT TOP LED ideal for light pipe Application. The low current requirement makes this device ideal for portable equipment or any other application where power is at a premium.


Applications:

- ♦ Automotive: Backlight in dashboards and switches.
- ♦ Telecommunication: Indicator and backlight in telephone and fax.
- ◇ Indicator and backlight for audio and video equipment.
- ♦ Indicator and backlight in office and family equipment.
- ◇ Flat backlight for LCD's, switches and symbols.
- \diamond Light pipe application.
- \diamond General use.

Page: 2 OF 9

Package Dimension:

Part No.	Chip Material	Lens Color	Source Color
R5050UYC-Y2-4D	AlGaInP	Water Clear	Super Yellow

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise specified.
- 3. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25 $^\circ\!\!\!\mathrm{C}$

Parameters	Symbol	Max.	Unit
Power Dissipation	PD	60X3	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100X3	mA
Continuous Forward Current	IF	25X3	mA
Reverse Voltage	VR	5	V
Electrostatic Discharge (HBM)	ESD	2000 V	
Operating Temperature Range	Topr	-40°C to +80°C	
Storage Temperature Range	Tstg	-40℃ to +85℃	
Soldering Temperature	Tsld	260 [°] C for 5 Seconds	

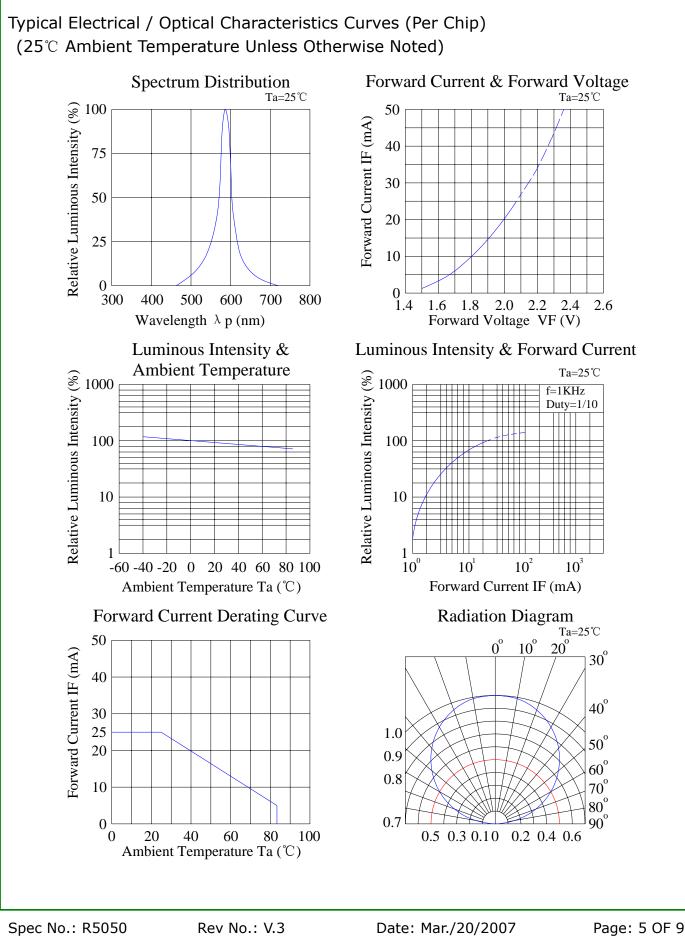
Electrical Optical Characteristics at Ta=25°C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	IV	1200	2200		mcd	IF=20mA×3=60mA (Note 1)
Viewing Angle	20 _{1/2}		120		Deg	IF=20mA×3=60mA (Note 2)
Peak Emission Wavelength	λр		592		nm	IF=20mA×3=60mA
Dominant Wavelength	λd		590		nm	IF=20mA×3=60mA (Note 3)
Spectral Line Half-Width	Δλ		15		nm	IF=20mA×3=60mA
Forward Voltage	VF	1.60	2.00	2.40	V	IF=20mA×3=60mA
Reverse Current	IR			10	μA	V _R =5V

Notes:

1. Luminous Intensity Measurement allowance is \pm 10%.

2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.


3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Approved: JoJo

Lucky Light Electronics Co., Ltd.

Checked: Wu

Drawn: Li http://www.luckylightled.com

Reliability Test Items And Conditions (Per Chip):

The reliability of products shall be satisfied with items listed below:

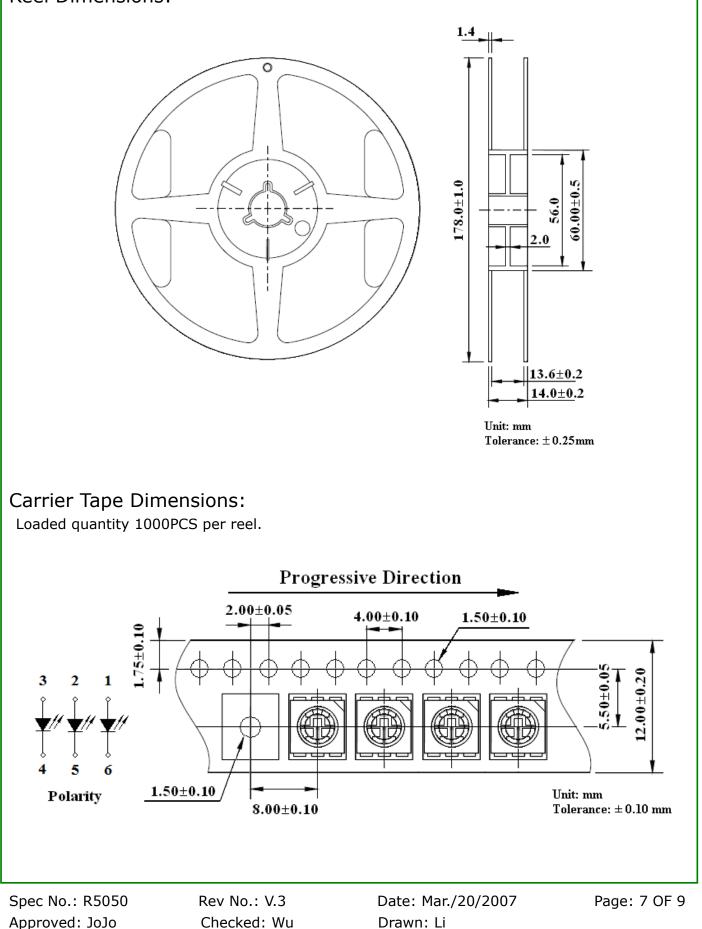
Confidence level: 90%.

LTPD: 10%.

1) Test Items and Results:

No.	Test Item	Test Hours/Cycles	Test Conditions	Sample Size	Ac/Re
1	Resistance to Soldering Heat	6 Min	TsId=260±5℃, Min. 5sec	25pcs	0/1
2	Thermal Shock	300 Cycles	H: +100℃ 5min ∫ 10 sec L: -10℃ 5min	25pcs	0/1
3	Temperature Cycle	300 Cycles	H: +100℃ 15min ∫ 5min L: -40℃ 15min	25pcs	0/1
4	High Temperature Storage	1000Hrs.	Temp: 100 ℃	25pcs	0/1
5	DC Operating Life	1000Hrs.	IF=60mA	25pcs	0/1
6	Low Temperature Storage	1000Hrs.	Temp: -40 ℃	25pcs	0/1
7	High Temperature/ High Humidity	1000Hrs.	85℃/85%RH	25pcs	0/1

2) Criteria for Judging the Damage:


Item	Symbol	Test Conditions	Criteria fo	Criteria for Judgment		
Item	Symbol		Min	Max		
Forward Voltage	VF	IF=60mA		F.V.*)×1.1		
Reverse Current	IR	VR=5V		F.V.*)×2.0		
Luminous Intensity	IV	IF=60mA	F.V.*)×0.7			

*) F.V.: First Value.

Lucky Light Electronics Co., Ltd.

Reel Dimensions:

http://www.luckylightled.com

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

2.1 Do not open moisture proof bag before the products are ready to use.

2.2 Before opening the package, the LEDs should be kept at $30\,^\circ\!\!\mathbb{C}$ or less and 80%RH or less.

2.3 The LEDs should be used within a year.

2.4 After opening the package, the LEDs should be kept at $30\,^\circ\!\!\mathrm{C}$ or less and 60%RH or less.

2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

2.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\pm5^{\circ}$ for 24 hours.

3. Soldering Condition

When soldering, for Lamp without stopper type and must be leave a minimum of 3mm clearance from the base of the lens to the soldering point.

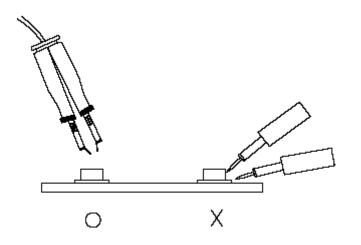
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

Soldering Iron		Wave Soldering		
Temperature Soldering Time	300℃ Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat Time Solder Wave Soldering Time	100℃ Max. 60 sec. Max. 260℃ Max. 5 sec. Max.	

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.


4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260° for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.